On the Application of Various Probabilistic Neural Networks in Solving Different Pattern Classification Problems
نویسندگان
چکیده
A Probabilistic Neural Network (PNN) is defined as an implementation of statistical algorithm called Kernel discriminate analysis in which the operations are organized into multilayered feed forward network with four layers: input layer, pattern layer, summation layer and output layer. A PNN is predominantly a classifier since it can map any input pattern to a number of classifications. Among the main advantages that discriminate PNN is: Fast training process, an inherently parallel structure, guaranteed to converge to an optimal classifier as the size of the representative training set increases and training samples can be added or removed without extensive retraining. Accordingly, a PNN learns more quickly than many neural networks model and have had success on a variety of applications. Based on these facts and advantages, PNN can be viewed as a supervised neural network that is capable of using it in system classification and pattern recognition. The main objective of this paper is to describe the possible use of various PNN in solving some problems arising in signal processing and pattern recognition. The main attention is devoted to application of PNN in various classification problems like: classification brain tissues in multiple sclerosis, classification image texture, classification of soil texture and EEG pattern classification. Experimental results have been carried out and it verify the ability of modified PNN in achieving good classification rate in compared with traditional PNN or back propagation neural network BPNN and KNN.
منابع مشابه
On the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملطراحی و آموزش شبکه های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت های موازی
Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...
متن کامل